skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moon, Cooper"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Few studies have investigated how mature trees recover physiologically from wildfire damage, and none have comprehensively linked tree hydraulics with belowground function. Uncovering mechanistic links between rates of above‐ and belowground recovery is necessary for improving predictions of forest resilience and carbon dynamics following wildfire. We coupled continuous measurements of tree water flow and soil CO2efflux with detailed physiological measurements of above‐ and belowground function following a mixed‐severity wildfire. We found that maturePinus ponderosatrees with up to 85% canopy and stem damage resumed physiological functioning by the second growing season post‐fire. However, these trees also exhibited delayed peak water uptake (relative to less‐burned trees) that coincided with summer heat and drought. Our results suggest fire damage may prevent the critical timing in which peak physiological function overlaps with optimal growing conditions (e.g., moisture and nutrient availability). As a result, we suggest the degree of root and microbial damage should be assessed along with observed aboveground damage to more effectively predict tree recovery potential. While significantly damaged trees resumed typical hydraulic function within two years, observed delays in peak water uptake could require higher water and nutrient use efficiency to maintain carbon sequestration rates. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. Abstract Forest disturbance has well-characterized effects on soil microbial communities in tropical and northern hemisphere ecosystems, but little is known regarding effects of disturbance in temperate forests of the southern hemisphere. To address this question, we collected soils from intact and degraded Eucalyptus forests along an east–west transect across Tasmania, Australia, and characterized prokaryotic and fungal communities using amplicon sequencing. Forest degradation altered soil microbial community composition and function, with consistent patterns across soil horizons and regions of Tasmania. Responses of prokaryotic communities included decreased relative abundance of Acidobacteriota, nitrifying archaea, and methane-oxidizing prokaryotes in the degraded forest sites, while fungal responses included decreased relative abundance of some saprotrophic taxa (e.g. litter saprotrophs). Forest degradation also reduced network connectivity in prokaryotic communities and increased the importance of dispersal limitation in assembling both prokaryotic and fungal communities, suggesting recolonization dynamics drive microbial composition following disturbance. Further, changes in microbial functional groups reflected changes in soil chemical properties—reductions in nitrifying microorganisms corresponded with reduced NO3-N pools in the degraded soils. Overall, our results show that soil microbiota are highly responsive to forest degradation in eucalypt forests and demonstrate that microbial responses to degradation will drive changes in key forest ecosystem functions. 
    more » « less